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Ageing

SKELETAL MUSCLE

ROS

Accumulation of 
oxidised proteins 

and altered proteostasis

• Loss of muscle bulk
• Loss of individual muscle fibres
• Loss of motor units
• Structural alterations and 
   fragmentation of NMJs
• Defective muscle innervation

Abstract Skeletal muscle ageing is characterised by atrophy, a deficit in specific force generation,
increased susceptibility to injury, and incomplete recovery after severe damage. The hypothesis
that increased generation of reactive oxygen species (ROS) in vivo plays a key role in the ageing
process has been extensively studied, but remains controversial. Skeletal muscle generates ROS
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at rest and during exercise. ROS can cause oxidative damage particularly to proteins. Indeed,
products of oxidative damage accumulate in skeletal muscle during ageing and the ability of
muscle cells to respond to increased ROS becomes defective. The aim of this review is to examine
the evidence that ROS manipulation in peripheral nerves and/or muscle modifies mechanisms of
proteostasis in skeletal muscle and plays a key role in initiating sarcopenia.
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Abstract figure legend Skeletal muscle ageing.

Abbreviations CMA, chaperone-mediated autophagy; Cu/ZnSOD, copper, zinc superoxide dismutase; EMG, electro-
myography; HSP, heat shock protein; LAMP-2A, lysosome-associated membrane protein type 2A; MA, macroautophagy;
MnSOD, manganese superoxide dismutase; mtROS, mitochondrial ROS; NFκB, nuclear transcription factor kappa B;
NMJs, neuromuscular junctions; ROS, reactive oxygen species; SOD, superoxide dismutase; Sod1, copper, zinc super-
oxide dismutase; WT, wild-type.

Introduction

A 30–50% loss of muscle mass occurs between the ages of
50 and 80 years (Fried et al. 2001; Bortz, 2002; Espinoza &
Walston, 2005; Cesari et al. 2006) that impacts profoundly
on the quality of life of older people resulting in a
reduced ability to carry out everyday tasks and increased
likelihood of falling. All individuals lose muscle mass and
develop age-related muscle weakness (termed sarcopenia
when it reaches clinically relevant severity), although some
individuals are more prone to sarcopenia. The underlying
mechanisms are unclear, but an individual’s initial muscle
mass appears to be a critical factor influencing the risk of
developing sarcopenia. For example, veteran athletes lose
muscle mass at the same rate as sedentary individuals, but
have a high peak muscle mass in earlier life and reach the
threshold for poor function at a later age than sedentary
individuals (Pearson et al. 2002). Muscle mass is dictated
by the number of muscle fibres and the size of the fibres.
The decline in muscle mass and strength in people after
the age of �50 appears primarily due to loss of muscle
fibres with weakening of the remaining fibres (Marzetti
et al. 2009). For example, in humans, Lexell et al. (1988)
reported 40% fewer fibres in the vastus lateralis quadriceps
muscles of older individuals (Lexell et al. 1988).

Data clearly indicate that in ageing man and rodents,
loss of motor neurons accompanies the loss of muscle
fibres (Campbell et al. 1973; Brown et al. 1988; Einsiedel
& Luff, 1992; Larsson & Ansved, 1995), but whether
motor neuron loss is a cause or a consequence of muscle
fibre deficits has not been definitively established due
largely to the lack of available techniques to directly count
motor units (a motor unit consists of a single α-motor
neuron and all of the muscle fibres it innervates) in
humans. Measurements have been limited to post mortem
anatomical estimates or estimates based on electro-
myography (EMG). Post mortem anatomical studies have
shown that people aged 75 years have 30% fewer

motor neurons supplying the muscles of the lower limbs
compared with young adults (Kawamura et al. 1977;
Tomlinson & Irving, 1977; Mittal & Logmani, 1987). One
of the first studies to demonstrate motor unit loss during
healthy ageing using EMG was by Campbell et al. (1973),
who recorded evoked potentials and compared these with
maximum M-waves to estimate that there were 50% fewer
motor units in the extensor digitorum brevis in people
above 60 years. Brown et al (1988) also demonstrated that
subjects over 60 years of age have approximately half the
numbers of motor units of subjects less than 60 years of age
(Brown et al. 1988) and more recently, using intramuscular
and surface EMG signals from the vastus lateralis during
voluntary contractions, Piasecki et al. demonstrated that
the total number of motor units in muscles from older
individuals (above 65 years) was between 50% and 60%
lower compared to those in young (Piasecki et al. 2016b).
The range of techniques available to estimate motor unit
numbers in humans and their limitations have been
reviewed elsewhere (Piasecki et al. 2016a).

Several studies have also reported swollen, segmental
demyelinated and remyelinated axons in peripheral nerve
of old animals and humans (Sharma et al. 1980;
Grover-Johnson & Spencer, 1981; Adinolfi et al. 1991;
Verdu et al. 2000) and such neuronal changes have been
proposed to play a major role in the age-related loss
of muscle mass and function (Delbono, 2003). Neuro-
muscular junctions (NMJs) in muscle fibres of old mice
show a variety of alterations, including axonal swellings,
sprouting, synaptic detachment, withdrawal of axons from
postsynaptic sites and fragmentation of the acetylcholine
receptors (AChRs) (Valdez et al. 2010; Chai et al. 2011;
Vasilaki et al. 2016).

Reactive oxygen species and their role in the loss of
skeletal muscle mass during ageing. Regulated changes
in reactive oxygen species (ROS) formation are important
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in signalling to maintain normal physiological processes
in all cells including muscles and neurons. The main
physiological mechanism by which cells regulate ROS
activities (and hence protect against oxidative damage)
is by modification of the expression and activities
of regulatory enzymes such as manganese superoxide
dismutase (MnSOD), copper, zinc superoxide dismutase
(Cu/ZnSOD), catalase, glutathione peroxidases and haem
oxygenase-1 (Powers & Jackson, 2008). Acute increases in
ROS generation in skeletal muscle lead to activation of a
number of redox-sensitive transcription factors, including
nuclear transcription factor kappa B (NFκB) and activator
protein-1 (Vasilaki et al. 2006b; Gomez-Cabrera et al.
2008) with the subsequent increased expression of anti-
oxidant defence enzymes such as superoxide dismutase
(SOD) and catalase and cytoprotective proteins such as
heat shock proteins (HSPs) (McArdle et al. 2001; Vasilaki
et al. 2006b). Motor neurons also have the capacity
to upregulate some of these cytoprotective proteins in
response to exogenous reactive oxygen and nitrogen
species (Bishop et al. 1999).

ROS activities in many tissues increase with age and
there is evidence that increased ROS generation may be
involved in several age-related pathologies. In skeletal
muscle, in vitro and in vivo studies have provided evidence
of an age-related increase in ROS production (Vasilaki et al.
2006a; Palomero et al. 2013). Increased ROS production
can lead to changes in the redox state of muscle cells with
potentially serious effects on muscle such as cumulative
damage to cellular macromolecules including lipids in
cell membranes, DNA, and subcellular membranes and
structures. A major effect of aberrant ROS generation is
oxidative damage to proteins (Levine & Stadtman, 2001;
Dalle-Donne et al. 2003; Ghezzi & Bonetto, 2003). There
is a large body of evidence supporting the accumulation
of ROS-induced damaged proteins in senescent cells and
tissues from old animals and our previous work has shown
that muscles of old wild-type (WT) mice have an elevated
content of a marker of oxidative damage, 3-nitrotyrosine
residues, in the major cytosolic protein carbonic anhydrase
III (Vasilaki et al. 2007) and increased protein carbonyl
content (Broome et al. 2006) in comparison with muscles
from adult WT mice. Accumulation of oxidised proteins
can lead to formation of insoluble protein aggregates,
and therefore carbonylated proteins and other irreversibly
modified proteins must be degraded in order to prevent
them from forming aggregates.

The main players in proteostasis maintenance influ-
encing skeletal muscle are the chaperones, the calcium-
dependent calpains, and the ubiquitin–proteasome and
the lysosome–autophagy systems. These components are
responsible for the fate of unfolded, misfolded or oxidised
proteins, i.e. whether they will refold into their original
conformation or whether they will be removed from
the cell (Kaushik & Cuervo, 2015; Anthony, 2016; Hohn

et al. 2017). When a protein is targeted for degradation,
chaperones often dictate which proteolytic pathway these
unfolded, misfolded or oxidised proteins will follow.
Many chaperones are HSPs, which are named according
to their molecular mass, e.g. the HSP70 family (which
consists of the constitutively expressed HSC70 and highly
inducible HSP70) and HSP90, and interventions that
maintain overexpression of HSPs, such as HSP70, pre-
vent the accumulation of oxidative damage and preserve
some aspects of age-related muscle dysfunction (McArdle
et al. 2004; Broome et al. 2006).

During chaperone-mediated autophagy (CMA), sub-
strate proteins are first recognised and bind to heat shock
cognate, HSC70. The resulting complex is then targeted to
the lysosomes by binding to the lysosomal CMA receptor
known as lysosome-associated membrane protein type
2A (LAMP-2A), at which point the target protein is
unfolded and translocated into the lysosomal lumen for
degradation (Cuervo & Wong, 2014; Zhou et al. 2017).
CMA operates at basal conditions in most mammalian
cells, but it is mostly activated in response to stressors,
such as oxidative stress (Xilouri & Stefanis, 2016). The
activity of CMA has been shown to decline with age
in some tissues such as the central nervous system and
this decline, which associates with the accumulation of
damaged/oxidised/aggregated proteins has been proposed
to contribute to tissue dysfunction and possibly to
some common age-related human disorders, such as
Parkinson’s and Alzheimer’s disease (Xilouri & Stefanis,
2016). However, little is known about CMA in other
tissues such as skeletal muscle during ageing. Our pre-
vious work has shown that oxidative damage to proteins
in muscle during ageing is associated with an increase in
HSC70 content in quiescent muscles of old mice (Vasilaki
et al. 2006b) suggesting that muscles of old mice are
trying to adapt in order to prevent the accumulation of
oxidised proteins. This is in contrast to the findings from
a recent study by Zhou and colleagues who demonstrated
decreased protein levels of HSC70 and LAMP-2A in
muscle from old mice but an increase in ubiquitinated
proteins (Zhou et al. 2017). Currently, the function of
CMA in skeletal muscle is not well understood and since
we did not measure LAMP-2A or ubiquitinated proteins
in our study, we can only speculate that the increased
content of HSC70 in muscles of old mice does not result in
functional CMA as it may be the case that the formation
of damaged proteins overwhelms their degradation and
instead contributes to protein aggregation and subsequent
loss in proteostasis mechanisms. It is also worth noting
that once misfolded proteins organise into oligomers or
insoluble aggregates, the only option for their elimination
is by degradation in lysosomes via macroautophagy (MA)
or expulsion outside the cell by exosomes (Kaushik &
Cuervo, 2015). Therefore further studies are required in
order to identify the exact mechanisms involved.

C© 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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A novel mouse model of frailty: the Cu/ZnSOD knockout
mouse. A clear link between age-related muscle loss and
increased ROS production has been indicated by studies
of mice lacking Cu/ZnSOD (Sod1−/− mice). These mice
have a significantly shortened lifespan (�30%) compared
to WT mice and have an accelerated decline in muscle
mass and function (Muller et al. 2006). In addition, adult
Sod1−/− mice show loss of motor function and contra-
ctility, declines in nerve conduction, decline in the number
of motor units, partial denervation, degeneration of
NMJs and increased muscle mitochondrial ROS (mtROS)
generation and mitochondrial dysfunction (Flood et al.
1999; Shefner et al. 1999; Jang et al. 2010; Vasilaki et al.
2010; Larkin et al. 2011; Sims-Robinson et al. 2013; Deepa
et al. 2017). In contrast to adult WT mice, but in common
with old WT mice, adult mice lacking Cu/ZnSOD have
an elevated content of 3-nitrotyrosine residues (Vasilaki
et al. 2007) and also demonstrate a constitutive activation
of NFκB and a constitutive increase in the content of HSPs
in muscle at rest (Vasilaki et al. 2010).

The great extent to which changes in Sod1−/− mice
mimic normal ageing indicates that Sod1−/− mice provide
a model in which to study mechanistic links between
oxidative stress and sarcopenia and to gain insight into
mechanisms of age-associated atrophy and weakness.
While strong associations exist between degeneration of
NMJs and declines in mass and force both in Sod1−/− mice
and with normal ageing (Jang & Van Remmen, 2011),
knowledge of whether age-associated muscle wasting
and weakness are due to changes proximal or distal to
neuromuscular synapses is a major gap in our under-
standing of sarcopenia. To address questions of the relative

importance of pre- vs. postsynaptic changes, we developed
unique mouse models with tissue-specific targeting of
Cu/ZnSOD. These models have generated several key
findings. (1) Partial restoration of Cu/ZnSOD only in
neurons of Sod1−/− mice prevented the increases in
muscle mtROS production, premature muscle atrophy,
and weakness observed in Sod1−/− mice (Sakellariou
et al. 2014). In contrast to Sod1−/− mice, the level of
protein nitration and the protein content of a peroxynitrite
reductase, peroxiredoxin 5 (PRXV), as well as the contents
of key HSPs in skeletal muscle from these mice, were
not different from WT levels, indicating no change in
the overall redox status. (2) Mice with Sod1 deficiency
in neurons alone (nSod1KO mice) do not show atrophy
in gastrocnemius muscles, show only mild weakness
and limited evidence of NMJ disruption, and show
no significant changes in either mtROS generation or
oxidative damage measured by 3-nitrotyrosine residues
suggesting that Cu/ZnSOD deficit in the motor neuron
alone is not sufficient to initiate a full sarcopenic
phenotype (Sataranatarajan et al. 2015). (3) Finally, mice
lacking Cu/ZnSOD only in muscle fibres do not show
NMJ degeneration or muscle atrophy, show no changes
in the HSP content, and oxidative damage is not elevated,
but they do show weakness and increased susceptibility to
injury (Zhang et al. 2013). Collectively, these data suggest
that redox homeostasis in motor neurons is a critical
factor in initiating sarcopenia, but that the progression of
sarcopenia is determined by complex interactions between
both pre- and postsynaptic factors (Fig. 1).

Because adult mice lacking Cu/ZnSOD reproduce many
of the main features seen in old WT mice, they may

Whole body Cu/ZnSOD deficiency
• impaired redox homeostasis
• age-related muscle loss
• loss of motor function and contractility
• declines in nerve conduction
• decline in the number of motor units
• partial denervation
• degeneration of NMJs

Cu/ZnSOD deficiency in muscle alone
• no elevation in oxidative damage
• mild muscle weakness
• no muscle atrophy
• no NMJ degeneration

Cu/ZnSOD deficiency in nerve alone
• no changes in oxidative damage
• mild muscle weakness
• altered NMJ morphology

Pre-synaptic

Post-synaptic

Motor neuron

Muscle fibre

NMJ

Figure 1. Cu/ZnSOD deficits in either the motor neuron or muscle alone are not sufficient to initiate a
full sarcopenic phenotype as seen in Sod1− /− mice

C© 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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indicate important mechanisms that lead to loss of
muscle fibres and function that are relevant to the ageing
of WT mice. The Sod1−/− mice as well as our other
novel mouse models with tissue specific modulation of
Cu/ZnSOD have also demonstrated the importance of
nerve–muscle interactions in the maintenance of neuro-
muscular function where ROS homeostasis is altered.
Because our data indicate that motor neuron deficits
arising from an oxidised redox status are critical in
sarcopenia, our future work will focus on determining
the impact of oxidative stress in motor neurons on NMJ
formation and maintenance and the impact of directly
disrupting NMJs on key postsynaptic muscle functions.

In summary, current findings support the hypothesis
that increased generation of ROS is an important
component of the ageing process, providing a link
between accumulation of oxidative damage and muscle
dysfunction.
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