

Methods in Biomechanics - Kinemetry

Opto-electronic motion analysis systems

Active and passive markers

Passive: Retroreflective material (3M Scotch®); reflect light into the direction, where it originates from; Problem with hidden markers

Active: Time multiplexed LEDs -> not simultaneous

European Master in Health and Physical Activity
Biomechanics and Motion Analysis – Slide 26

Methods in Biomechanics - Kinemetry

Opto-electronic motion analysis systems

Calibration

Recording of a calibration object

E.g.: Direct linear transformation (DLT) technique After calibration: Do not change camera settings

Calibration frame

European Master in Health and Physical ActivityBiomechanics and Motion Analysis – Slide 28

Calibration – "magic wand"

Subject with markers

European Master in Health and Physical Activity
Biomechanics and Motion Analysis – Slide 30

3D analysis of maximum forehand strokes under fatiguing conditions

Marker points on body segments - "Marker Sets"

Based on standardized protocols for positioning markers

Examples: Plug-in-Gait, Helen-Hayes

Plug-in-Gait Marker Placement European Master in Health and Physical Activity Biomechanics and Motion Analysis – Slide 32

Start

European Master in Health and Physical Activity Biomechanics and Motion Analysis – Slide 34

Methods in Biomechanics - Kinemetry

Opto-electronic motion analysis systems

Video-based off-line systems

- Are based on digital video
- Principles of marker recognition and tracking as in real-time systems
- Better options for operator to intervene

Markerless Systems

European Master in Health and Physical Activity Biomechanics and Motion Analysis – Slide 36

Methods in Biomechanics - Dynamometry

Force plates

Typical Measuring Chains

Fig. 10: Configuration of a typical measuring chain with Kistler DAQ system BioWare®

Methods in Biomechanics - Dynamometry

European Master in Health and Physical Activity
Biomechanics and Motion Analysis – Slide 38

Methods in Biomechanics - Dynamometry

Pressure distribution

European Master in Health and Physical Activity
Biomechanics and Motion Analysis – Slide 40

Methods in Biomechanics - Electromyography

Methods for estimating muscle activity

Methods in Biomechanics - Electromyography

Contraction of a muscle (0 to 100% MVC)

(www.delsys.com)

European Master in Health and Physical Activity Biomechanics and Motion Analysis – Slide 42

Methods in Biomechanics - Electromyography

- Temporal activation pattern (start and end of activity) of a muscle,
- Contribution / non-contribution of a specific muscle to a motion,
- Timely coordination of muscles (intermuscular coordination; timing or sequencing),
- Antagonistic / synergistic muscle activities.

Inverse dynamics

European Master in Health and Physical Activity Biomechanics and Motion Analysis – Slide 44

Inverse dynamics

 R_Y , R_Z ... Ground reaction force

F_G... Weight of foot

M... Net muscle moment

Inverse dynamics

$$R_Y$$
, R_Z ... Ground reaction force

 a_y , a_z ...acceleration of center of mass (foot) in y- and z-direction

$$m \, a_Y = F_Y - R_Y \implies F_Y = m \, a_Y + R_Y$$

 $m \, a_Z = F_Z - F_G + R_Z \implies F_Z = m \, a_Z + F_G - R_Z$

European Master in Health and Physical Activity Biomechanics and Motion Analysis – Slide 46

Inverse dynamics

 R_Y , R_Z ... Ground reaction force

F_G... Weight of foot

M... Net muscle moment

J...Moment of inertia w.r.t. normal axis passing through center of mass

$$M = \mathsf{J}\alpha - M_{Fz} - M_{Fy} - M_{Rz} - M_{Ry}$$

 $J\alpha = M_{Fz} + M_{Fy} + M_{Rz} + M_{Ry} + M$

M_i...Moment of Force F_i

universität

erasmus

European Master in Health and Physical Activity Biomechanics and Motion Analysis – Slide 48

Kinovea – open Source Video Analysis Software

Installation Instructions (Windows only):

- Use the following link to download Kinovea 0.9.3 (beta): https://kinovea.org/setup/kinovea.0.9.3/Kinovea-0.9.3-x64.exe
- 2. Save the file on your local hard drive
- 3. Run the installer (double-click on that file) and follow the instructions on your screen
- When asked for installing .NET platform 4.8 agree and wait until the complete installation routine has finished
- 5. Now you can try to run Kinovea using the link on the Desktop

http://www.kinovea.org