

Wearables -Forecast

Source: IDC 2018

Wearables - Accuracy

- > GPS and ECG-signals usually valid
- > Critical: Physical activity from accelerometer data
 - Influence of position of sensor (wrist; Hasson et al., 2009)
 - Measures for improving accuracy may result in lower acceptance (Dannecker et al., 2013)
 - Underestimation of energy expenditure (Santos et al., 2014)
- ➤ Increased accuracy from additional measuring devices (e.g. ECG), improved algorithms (Crouter et al., 2005) or pattern recognition (recognition of type of sport performed)
- ➤ Wrist-worn devices (Shcherbina et al., 2017): None of 7 commercial available devices achieved error in energy expenditure <20%

Apps – Market potential

Source: https://www.marketresearchfuture.com/reports/fitness-app-market-1405 (2019)

Apps – Market potential

- > 2020: 2,6 billion app users will have downloaded a mobile Health app at least once (551 million active users)
- Displayed apps in Health & Fitness and Medical categories:

Android 105.000 iOS 126.000

Research2Guidance (2016)

Apps – Problems / Barriers

- "app-escape"; 80 90% of health related mobile apps are uninstalled after first usage (Mendiola et al., JMIR mHealth and uHealth, 2015)
- Overextension (mental overload)
- ➤ Lack of / few behavior change or gamification elements

Wearables - Example - Rehabilitation

cf. Patel et al., JNER, 2012; Baca et al., Proj. desc., 2013

CONTENTS

- > Pervasive Computing
- Wearables and Apps
- > Intelligent Systems
- > Example: MMA
- > Perpectives & Conclusion

Intelligent devices

- Perform operations guiding its behavior to some extent autonomously
- > With respect to the surrounding environment (and its functionality)

Intelligent devices/systems in sport

- Feedback provision on the quality of the motion just performed Baca, Int J Comp Sci Sport, 2003
- Recommendations on how to further proceed
- ➤ Automatically suggesting strategies and interventions Baca, Dabnichki, Heller and Kornfeind, J Sports Sci, 2009
- Adaptation of the sports equipment to the current needs of the athlete

Intelligent devices/systems in sport

- Based on motion specific parameter values acquired by various sensors or sensor networks
- Possibility of miniaturizing sensors makes them perfectly suitable for acquisition of (biophysical, physiological, etc.) parameter values during regular sports activities
- ➤ Basis: Recognition of patterns characterizing the sports activity just performed and/or prediction of certain individual parameters (e. g. heart rate)

Methods for Classification

Statistical Classification

Methods

Statistical Decision

- Identification of the corresponding class of motion
- Selection of the appropriate feedback or adaptation of the sports equipment

Statistical decision

Binary classification trees

Decision engines

Bayes classifiers

K-Nearest Neighbour (k-NN)

Rule based approaches

Linear discriminant classifiers

Support Vector Machines

Unsupervised Neural Networks

Much consideration in sports and clinical biomechanics throughout the last years

(e.g. Bartlett, J Sports Sci Med, 2006)

Specific Models

APPROACH:

Feedback instructions, recommendations, etc. based on prediction of change of certain (e. g. physiological) parameters

Example: Prognosis of heart rate during running.

Recommendations for next track. Goal: Keeping heart rate in a target range, Method: Extrapolation (Vales-Alonso et al., Sensors, 2010)

CONTENTS

- Pervasive Computing
- Wearables and Apps
- > Intelligent Systems
- Example: MMA
- > Perpectives & Conclusion

Wireless Monitoring & Feedback Systems

Baca et al. J Sports Sci. 2009 Sep 17:1-12

Training/exercising under natural, complex and ecological valid conditions

Mobile Coaching – Goals

Ubiquitous Computing Technologies

Efficient algorithms for data processing

Mobile Motion Advisor (MMA)

MMA: E-Coaching - Marathon

MMA: E-Coaching - Marathon

Meta-model PerPot

MMA: E-Coaching – Marathon – Pilot Study

Subjects

- Runs on a flat track
- Runs completed within 2 weeks
- Comparable weather condititions
- No other physical sport activities
- Amateur athletes 18 25 years old (endurance sports like soccer, basketball, running...)

Results / Experiences

Nr.	Distance	T1	T2	Diff.	PP
1	10.000 m	47:46 min	50:36 min	+2:50 min	49:29 min
2	8.000 m	46:46 min	45:08 min	- 1:38 min	44:45 min
3	9.250 m	44:40 min	43:35 min	- 1:05 min	45:00 min
4	8.400 m	40:00 min	39.19 min	- 0:41 min	34:03 min
5	9.600 m	54:45 min	54:11 min	- 0:34 min	48:38 min
6	9.400 m	49:26 min	41:36 min	- 7:50 min	42:44 min
7	9.200 m	50:19 min	47:02 min	- 3:17 min	46:47 min
8	7.200 m	47:30 min	46:06 min	- 1:24 min	45:57 min
9	6.700 m	42:35 min	33:48 min	- 8:47 min	35:16 min
10	5.500 m	40:56 min	37:55 min	- 3:01 min	33:40 min
11	6.300 m	43:57 min	42:52 min	- 1:05 min	45:33 min
12	7.950 m	45:55 min	44:32 min	- 1:23 min	41:07 min

T1: Time of free run

T2: Time of assisted run

PP: Estimated time of PerPot

27 of 34 (**79.4**%) participants could **improve** their performance 2 (5.9%) participants ran identical speed 5 (14.7%) participants performed better **without** the system